网站地图联系我们电子所务搜索English中国科学院
 
首 页 机构概况 科研成果 研究队伍 国际交流 院地合作 研究生教育 文化 党群园地 科学传播 重点实验室
科研成果
现在位置:首页 > 科研成果 > 论文
论文编号: 41
论文题目: Effect of hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation,
英文论文题目: Effect of hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation,
第一作者: Su, X
英文第一作者:
联系作者: Tie Xuexi
英文联系作者: Tie Xuexi
外单位作者单位:
英文外单位作者单位:
发表年度: 2017
卷: 579
期:
页码: 221-229
摘要:
英文摘要: Beijing, the capital of China, is a mega city with a population of >20 million. In recent years, the city has experienced heavy air pollution, with particulate matter (PM) being one of its top pollutants. In the last decade, extensive efforts have been made to characterize the sources, properties, and processes of PM in Beijing. Despite progress made by previous studies, there are still some important questions to be answered and addressed. The focus of this research is to study the impact of the heterogeneous hydrolysis of N2O5 on the formation of nitrate (NOT) and ammonium (NH4+) in Beijing. The results show that during heavy pollution days (e.g., during 14-17 September 2015, with PM2.5 concentration over 100 mu g/m(3)), the concentrations of NO2 and 03 were high, with maxima of 90 and 240 mu g/m(3), respectively, providing high precursors for the formation of N2O5. In addition, the aerosol and sulfate concentrations were also high, with maxima of 201 mu g/m(3) and 23 mu g/m(3) respectively, providing reacting surface for the heterogeneous reaction. As a result, the hydrolysis of N2O5 led to 21.0% enhancement of nitrate (NO3-) and 7.5% enhancement of ammonium (NH4+). It is worth to note that this important effect only occurred in high pollution days (PM2.5-concentration over 100 mu g/m(3)). During low-pollution periods (PM2.5 concentration <100 mu g/m(3)), the effect of hydrolysis of N2O5 on the formation of nitrate and ammonium was insignificant (variation rate <5%). This study suggests that during heavy pollution periods, the hydrolysis of N2O5 enhances the level of aerosol pollution in Beijing, and needs to be further studied in order to perform-efficient air pollution control-and mitigation strategies.
刊物名称: SCIENCE OF THE TOTAL ENVIRONMENT
英文刊物名称: SCIENCE OF THE TOTAL ENVIRONMENT
论文全文:
英文论文全文:
全文链接: http://www.sciencedirect.com/science/article/pii/S0048969716325797
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者:
英文参与作者:
中国科学院地球环境研究所 版权所有:中国科学院地球环境研究所 单位邮编:710061
单位地址:陕西省西安市雁塔区雁翔路97号 电子邮件:web@ieecas.cn